Code No: 127CK

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year I Semester Examinations, July/August - 2022 DIGITAL SIGNAL PROCESSING (Electrical and Electronics Engineering) 3 Hours Max.Marks:75

R15

[8+7]

Time: 3 Hours

Answer any five questions All questions carry equal marks

- - -

- 1.a) For the impulse $h(n) = \delta(n) + \sin \pi n$, determine whether the corresponding system is i) causal ii) stable.
- b) Find the response of the difference equation y(n) + y(n-1) = x(n) where $x(n) = \cos 2n$. [6+9]
- 2.a) Determine the system function H(z), impulse response h(n) of the LTI system defined by the difference equation. u(n) = u(n) + 2u(n-1) + 2u(n-2)
 - y(n) = x(n) + 3x(n-1) + 2y(n-1) y(n-2)b) Realize the FIR system $H(z) = 1 + 2z^{-1} + \frac{1}{2}z^{-2} - \frac{1}{2}z^{-3} - \frac{1}{2}z^{-4}$ in Cascade form and Lattice structure. [7+8]
- 3.a) Compute the DFT of the square wave sequence.

$$x(n) = \begin{cases} 1 & 0 \le n \le \frac{N}{2} - 1 \\ -1 & \frac{N}{2} \le n \le N - 1, \text{ Where N is even} \end{cases}$$

- b) State and prove the properties of Discrete Fourier series. [7+8]
- 4.a) Draw the signal flow raph for 8-point DFT using DIT algorithm.
- b) Compute IDFT of the sequence $X(k) = \{16, 1, ..., j4, 4120, 0, 1 + j0, 4142, 0, 1 j0, 4142, 1 + j4, 4142\}$ using DIF algorithm. [6+9]
- 5.a) Design a Chebyshev lowpass filter with the specifications $\alpha_p = 1dB$ ripple in the pass band $0 \le \omega \le 0.2\pi$, $\alpha_s = 15dB$ ripple in the stop band $0.3\pi \le \omega \le \pi$ using Impulse Invariance.
 - b) Distinguish between Butterworth and Chebyshev filters. [10+5]
- 6.a) Design a band stop Butterworth filter with stop band 100 to 600Hz, 20dB attenuation at 200 and 400 Hz, gain is unity at $\omega = 0$ and passband attenuation is 3dB.
 - b) Discuss in detail about Spectral transformations. [10+5]
- 7.a) Design a Bandpass filter using Fourier series method with N=7.

$$H(e^{j\omega}) = \{ \begin{array}{cc} 1 & for \ \frac{\pi}{6} \le |\omega| \le \frac{\pi}{3} \\ 0 & otherwise \end{array}$$

- b) Use the window method with a Hamming window to design a 12-tap differentiator with N=12. [8+7]
- 8.a) Derive an expression for the spectrum of output signal of a decimator.
- b) Explain the methods to prevent Overflow in detail.

---00000----

Download all NOTES and PAPERS at StudentSuvidha.com